Chronic Exertional Compartment Syndrome: Diagnosis & Treatment

Mark R. Hutchinson, M.D.
Mary Lloyd Ireland, M.D.
Kenneth B. Tepper, M.D.
John A. LeBlanc, D.O.
Chronic Leg Pain: The Diagnostic Dilemma

• Exercise related leg pain is common among athletes
 • Most common in runners

• “Shin splints” are a wastebasket term that does not specify diagnosis or guide treatment and should be discouraged
Anatomic Sources of Leg Pain

• Bone
 • A continuum of bone trauma exists from bone strain to stress reaction to stress fracture

• Periosteum
 • Inflammation occurs at muscular insertions particular of tibialis posterior and soleus.

© 2002 Mark R. Hutchinson, M.D.
Anatomic Sources of Leg Pain

• Muscles and Compartments
 • 4-5 muscle compartments
 • Chronic strains and tendinopathy can occur

• Nerves
 • Proximal nerve entrapment can cause radicular pain
 • Systemic diseases can lead to neuropathy
Anatomic Sources of Leg Pain

- Arteries and Veins
 - Atherosclerosis can lead to claudication
 - Venous phlebitis or thrombosis can occur
 - Popliteal artery entrapment and arterial endofibrosis has been described in younger population.
Differential Dx of Chronic Leg Pain in Athletes

- CECS
- Muscle herniation
- Stress fractures
- Medial tibial periostitis (shin splints)
- Chronic muscle strain
- Popliteal artery entrapment
- Referred from spine

© 2002 Mark R. Hutchinson, M.D.
Don’t forget the Zebras

• Osteosarcoma /Tumors
• Trauma /Abuse
• Infection including TB, syphilis, bacterial, fungal
• Metabolic
 • Rickets, Hyperparathyroidism, Sarcoid, Sickle cell, Pagets, etc

© 2002 Mark R. Hutchinson, M.D.
Chronic Exertional Compartment Syndrome

"CECS is an effort induced pathologic elevation of tissue pressures within an osteofascial envelope that results in debilitating pain and neurologic symptoms."

Chronic Exertional Compartment Syndrome

- Age 12 to 70 years old
- Most common in runners
- May occur in any endurance athlete
 - Soccer
 - Cycling
 - Gymnastics
 - Basketball
 - Roller blading
 - Dance

© 2002 Mark R. Hutchinson, M.D.
Compartment Syndromes

• **Traumatic**
 - Secondary to fracture, crush, and reperfusion injuries
 - Surgical emergency
 - Skin and fascia may both contribute to compartmental restriction and increased pressure
 - Non-physiologic swelling secondary to trauma

• **Exertional**
 - Consistently exercise-induced
 - Generally endurance athletes
 - No pain at rest, pain consistently relieved with cessation of sport
 - Attributed to restriction of muscle swelling secondary to tight fascial compartments
 - Diagnosed with pre and post exercise pressure measurements
History and Physical: Clinical Pearls in Athletic Leg Pain

- Pain with initial impact
 - Stress fracture
 - Periostitis
 - Muscle strains and tendinitis

- Focal bone pain
 - Stress fracture
 - Diffuse medial bone pain
 - Medial tibial periostitis
 - Focal muscle pain
 - Strain or Hernia
History and Physical: Clinical Pearls in Athletic Leg Pain

- Pain with resisted motion
 - Muscle strains and periostitis
- Pain with vibration
 - Stress fractures
- Pain at night
 - Tumors
- Pain with exertion
 - CECS, Popliteal artery entrapment
- Paresthesias at rest
 - Nerve entrapment
- Paresthesias with exertion
 - CECS
- Electrical shooting pain
 - Radicular pain from back
History and Physical:
Clinical Pearls in Athletic Leg Pain

• Diffuse swelling
 • DVT
 • CECS
 • Muscle ruptures

• Focal swelling
 • Muscle herniation
 • Ganglion
 • Tumor

© 2002 Mark R. Hutchinson, M.D.
Physical Examination

- Inspection
- Anatomical palpation
- Muscle resistance
- Neurovascular
- Weight-bearing
- Ambulation
- Jumping
- Stair climbing

© 2002 Mark R. Hutchinson, M.D.
Intra-compartmental pressure measurements are key to diagnosis.

- Normal: 0-10 mmHg
- Resting: >15 mmHg
- Post exertion: >30 mmHg
- Delayed: >20 mmHg

© 2002 Mary Lloyd Ireland, M.D.

80% of CECS involve the anterior or lateral compartments (Cross-section just above middle of leg)

- Extensor digitorum longus m.
- Tibialis Posterior m.
- Flexor digitorum longus m.
- Peroneus longus m.
- Peroneus brevis m.
- Flexor hallucis longus m.
- Soleus m.
- Gastrocnemius m. (lateral head)
- Gastrocnemius m. (medial head)

Nerves (Cross-section just above middle of leg)

- Superficial Peroneal n.
- Anterior tibial a. and v. and deep peroneal n.
- Posterior tibial a. and vv. and tibial n.
- Lateral sural Cutaneous n.
- Medial sural Cutaneous n.
Anterior and Lateral Compartments

- Extensor digitorum longus m.
- Tibialis anterior m.
- Extensor hallucis longus m.
- Intermuscular septum
- Peroneus longus m.
- Peroneus brevis m.
Posterior Compartments: Deep and Superficial

- Tibialis Posterior m.
- Flexor digitorum longus m.
- Flexor hallucis longus m.
- Soleus m.
- Gastrocnemius m. (lateral head)
- Gastrocnemius m. (medial head)
Pre-Exercise Testing
TESTING: Diagnostic Criteria of CECS

Intracompartmental pressure measurements are key to diagnosis.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Pressure (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>0-10</td>
</tr>
<tr>
<td>Resting</td>
<td>> 15</td>
</tr>
<tr>
<td>Post exertion</td>
<td>> 30</td>
</tr>
<tr>
<td>Delayed</td>
<td>> 20</td>
</tr>
</tbody>
</table>

Treatment Options for CECS

- NSAIDS (-)
- Massage (-)
- Rest (±)
- Stretching and strengthening (-)
- Modalities (-)
- Shoe and surface modification (±)
- Fascial release (+)

You must rule out associated factors or diagnoses.
Options of Surgical Technique

• Formal fascial release
• Fasciectomy
• Percutaneous
• Dual incision mini approach
• Single incision mini approach
• Endoscopically assisted
Development of Endoscopic-Assisted Fascial Releases for CECS

- First described as technique for leg releases as case report in 1999
 - Oto et al., *Arthroscopy*, 1999
- First described as forearm release in *in vitro* study in 1999
- First description of 2-incision endoscopic technique in *cadaveric study* in 2002
Development of Endoscopic-Assisted Fascial Releases for CECS at UIC

- In 1996, we performed our first endoscopically-assisted fascial release on a young athlete in an aesthetically demanding sport.
 - Briner, Hutchinson et al, ACSM Annual Meeting, 1998
- Subsequent embalmed and fresh cadaveric studies identified the risk and efficacy of the procedure.
 - Hutchinson MR, Bederka B. AOSSM Annual Meeting, 2000
Results of Anatomic Studies

10 cadaveric legs – endoscopic technique
6 cadaveric legs – percutaneous via minimal single incision

• Length of release
 • Anterior: 210 ± 28 mm
 • Lateral: 171 ± 27 mm
 • Sup posterior 189 ± 23 mm
 • Deep posterior 154 ± 28 mm
Superficial Peroneal Nerve Injury

- Endoscopically assisted: 0/10 legs
- Percutaneous: 4/6 legs
- \(P = 0.0082 \) (Fisher’s Exact Test)

Endo is Safer
Saphenous Vein Injury

- Endoscopically assisted: 1/10 complete transection, 3/10 branches only
- Percutaneous: 4/6 with complete transection or longitudinal laceration
- $P = 0.036$ by Fisher’s Exact Test

Most common injured structure.
Essential Equipment for
Endoscopic Technique

• Long thin retractors
• 0 or 30 degree endoscope
• Arthroscopic electrocautery
• Extended Metzenbaum scissors or fasciotome

© 2002 Mark R. Hutchinson, M.D.
Endoscopically Assisted One-Incision Fascial Release

Surface Anatomy
UIC Results for Single Incision Endoscopic Fascial Release for CECS

• Last 20 extremities
• 1 – 5 year follow-up
• No superficial peroneal nerve injuries
• Medial releases performed only when indicated
• No hematomas drained or post-operative cellulitis
• 12/13 return to sport
Literature Review

- Mavor, *JBJS*, 1956
 - First successful surgical release of CECS
 - Largest consecutive series of fascial releases
 - 100 patients, 82 bilateral
 - 90% success as outpatient under local
 - Return to running in 21 days
 - 18 patients, 87% bilateral
 - 39% with fascial herniation
 - 92% success with releases
Literature Review

 - Reduced success of fascial releases in female athletes
 - Series of 23 adolescents (age 14-18)
 - 22 elected surgical release (percutaneous)
 - No reported complications
 - 100% success
Endoscopically-Assisted Two-Incision Fascial Release
40% Have a Fascial Herniation

- If present, look for superficial peroneal nerve exiting there
- Begin release at that level
- Never close fascia

Leg Pain: Rhythmic Gymnast:

- 12 yo pre-menarchal elite rhythmic gymnast
- Youngest documented case of CECS
- Bilateral leg pain
 - Absent at rest
 - Absent with 1st impact
 - Builds up with exertion

© 2002 Linda Tremaine
Leg Pain: Rhythmic Gymnast

- Failed conservative tx
 - Massage
 - Nutrition
 - Hydration
 - NSAIDS
 - Therapy

- Imaging: negative
 - Radiographs
 - MRI
 - Bone scan

© 2002 Linda Tremaine

© 2002 Mark R. Hutchinson, M.D.
Leg Pain: Rhythmic Gymnast

- Compartment measurements
 - Resting: All compartments < 15
 - Post exertion:
 - Anterior (R32/L35)
 - Lateral (R31/L30)
 - D post (R24/L22)
 - Sup (R12/L13)
Leg Pain: Rhythmic Gymnast

• Treatment:
 • Let her grow out of it?
 • Endoscopically assisted fascial release elected secondary to competitive demands

• Results
 • Full, pain free competition at 3 months
 • Team Gold, Individual Bronze at 4-Continents at 6 months
18 YO Freshman collegiate basketball athlete

Complaints

- Pain L>R Calf
- Numbness, Tingling & Burning, Both Calves
- P.E. Calves soft
- Neurocirculatory Status Intact
- +FH: Brother with bilateral calf compartment
Differential Diagnosis

• Exertional compartment syndrome, left leg

• Stress fracture, left tibia
Clinical Course

- Passive stretching and reduction of running activities
- 2 months later, patient returned with continued symptoms; exam unchanged; compartments were soft.
- Patient underwent Stryker testing of bilateral compartments, pre- and post-exercise.
Stryker Compartment Testing

<table>
<thead>
<tr>
<th></th>
<th>Anterior</th>
<th></th>
<th>Posterior</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Resting</td>
<td>Post-Exercise</td>
<td>Resting</td>
<td>Post-Exercise</td>
</tr>
<tr>
<td>R</td>
<td>8</td>
<td>62</td>
<td>Not measured</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>20</td>
<td>42</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>
Post Op Course

- Crutches, PWB 2 wks.
- Walked Normally, 4 wks.
- Running, 2 months.
6 Months Post Op

- Bilateral Anterior and Lateral Releases
- No Complaints
- Playing Basketball
- Compartments Soft, without Bulge
13 YO Female Soccer Athlete

- Bilateral Calf Pain, R>L
- Past 6 Months
- C/O Knots and Burning Sensation, Lateral Calf, After 15 Minutes of Running
P.E.

- No Pain or Firmness on Calf Palpation
- Fascial Defect Lateral Distal Third
- Neurocirculatory Status Intact
- Bilateral Cavus Feet
<table>
<thead>
<tr>
<th></th>
<th>Anterior</th>
<th></th>
<th>Lateral</th>
<th></th>
<th>Posterior</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>33/26</td>
<td>42</td>
<td>8</td>
<td>29</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>L</td>
<td>10/13</td>
<td>22</td>
<td>30</td>
<td>22</td>
<td>7</td>
<td>13</td>
</tr>
</tbody>
</table>
Two-Incision

- Releases Anterior and Lateral Compartment
- Doing Well Post Op
- Pain Improved
19 YO Freshman Division I Collegiate Cross-Country and Distance Track Athlete

- C/O Pain in Both Calves After Running
- Began Cross-Country at Age 10
- No Previous Complaints
- Running More Miles, and on Concrete
P.E.

- No Firmness to Compartments or Tibia to Palpation
- Normal Pulses & Neurologic Exam
Previous Workup

- Normal Tib-Fib X-rays
- Normal Bone Scan
- Lumbar Spine X-rays and MRI Normal
- Resting Pressures
 - Lateral 12mm
 - Posterior 10mm
- With Indwelling Needle, Unable to Reproduce Symptoms Due to Pain
Compartiment Testing Re-Done

- Resting
- After Symptoms Occurs 45 min. of Running on Treadmill
Stryker Compartment Testing

<table>
<thead>
<tr>
<th></th>
<th>Anterior</th>
<th></th>
<th>Lateral</th>
<th></th>
<th>Posterior</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>15</td>
<td>6</td>
<td>13</td>
<td>18</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>L</td>
<td>26</td>
<td>6</td>
<td>20</td>
<td>18</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>
P. T. Evaluation & Treatment

- Rear Foot Striker
- Core Weakness
- R>L Hip Abductors and External Rotators
- Borderline High Resting Pressure Which decreases with Exercise
Treatment

• Modification of Running Program

• Hip, Back & Abdomen Strengthening

• Significant muscular inflexibility in all lower extremity muscle groups
Conclusions

• Diagnosis of compartment syndrome must be confirmed by compartmental testing before and after exercise
• Consider broad range of diagnoses for athletes with leg pain.
• Make sure of the diagnosis prior to surgical release
Know the anatomy before performing compartment testing or surgical releases.
Aesthetics

- Patients judge you by your wound.
- Minimal incisions are visually appealing.
- All females with CECS expressed particular interest in minimal incision.
Combination of the arthroscope and long retractors and long scissors optimizes visualization, reduces risk of superficial peroneal nerve injury and bleeding.
Clinical Pearls

• Always visualize the superficial peroneal nerve
• Confirm dx with compartment measurements
• Avoid medial release unless indicated
• Diligent intra-operative bleeding control without tourniquet
• Post-operative cryotherapy
Future Directions

- Increasing awareness of problem in all providers
- Does minimal incision surgery allow adequate fascial release?
- What is adequate release?
- Non-invasive testing to confirm the diagnosis (Near infrared spectroscopy)
The End . . . Thank You!

Mark R. Hutchinson, M.D.
Mary Lloyd Ireland, M.D.
Kenneth B. Tepper, M.D.
John A. LeBlanc, D.O.